Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra. | g−1 | g−3 | h3 | h1 | g3 | g1 | g2 | g5 | g4 | g7 | g6 | g8 | g9 |
weight | 0 | 0 | 0 | 0 | 0 | 0 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | 2ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ1 | −2ψ2 | 0 | 0 | 2ψ2 | 4ψ1 | ω1−2ψ1−2ψ2 | ω1−2ψ1 | ω1+2ψ1−2ψ2 | ω1−2ψ1+2ψ2 | ω1+2ψ1 | ω1+2ψ1+2ψ2 | 2ω1 |
Isotypical components + highest weight | V−4ψ1 → (0, -4, 0) | V−2ψ2 → (0, 0, -2) | V0 → (0, 0, 0) | V2ψ2 → (0, 0, 2) | V4ψ1 → (0, 4, 0) | Vω1−2ψ1−2ψ2 → (1, -2, -2) | Vω1−2ψ1 → (1, -2, 0) | Vω1+2ψ1−2ψ2 → (1, 2, -2) | Vω1−2ψ1+2ψ2 → (1, -2, 2) | Vω1+2ψ1 → (1, 2, 0) | Vω1+2ψ1+2ψ2 → (1, 2, 2) | V2ω1 → (2, 0, 0) | ||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | ||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 0 | 0 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | 2ω1 0 −2ω1 | ||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ1 | −2ψ2 | 0 | 2ψ2 | 4ψ1 | ω1−2ψ1−2ψ2 −ω1−2ψ1−2ψ2 | ω1−2ψ1 −ω1−2ψ1 | ω1+2ψ1−2ψ2 −ω1+2ψ1−2ψ2 | ω1−2ψ1+2ψ2 −ω1−2ψ1+2ψ2 | ω1+2ψ1 −ω1+2ψ1 | ω1+2ψ1+2ψ2 −ω1+2ψ1+2ψ2 | 2ω1 0 −2ω1 | ||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ1 | M−2ψ2 | M0 | M2ψ2 | M4ψ1 | Mω1−2ψ1−2ψ2⊕M−ω1−2ψ1−2ψ2 | Mω1−2ψ1⊕M−ω1−2ψ1 | Mω1+2ψ1−2ψ2⊕M−ω1+2ψ1−2ψ2 | Mω1−2ψ1+2ψ2⊕M−ω1−2ψ1+2ψ2 | Mω1+2ψ1⊕M−ω1+2ψ1 | Mω1+2ψ1+2ψ2⊕M−ω1+2ψ1+2ψ2 | M2ω1⊕M0⊕M−2ω1 | ||||||||||||||||||||||||||||||||||
Isotypic character | M−4ψ1 | M−2ψ2 | 2M0 | M2ψ2 | M4ψ1 | Mω1−2ψ1−2ψ2⊕M−ω1−2ψ1−2ψ2 | Mω1−2ψ1⊕M−ω1−2ψ1 | Mω1+2ψ1−2ψ2⊕M−ω1+2ψ1−2ψ2 | Mω1−2ψ1+2ψ2⊕M−ω1−2ψ1+2ψ2 | Mω1+2ψ1⊕M−ω1+2ψ1 | Mω1+2ψ1+2ψ2⊕M−ω1+2ψ1+2ψ2 | M2ω1⊕M0⊕M−2ω1 |